Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Petroleum...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Petroleum Science and Engineering
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

Crude oil characterization using TGA-DTA, TGA-FTIR and TGA-MS techniques

Authors: Kök M.; Varfolomeev M.; Nurgaliev D.;

Crude oil characterization using TGA-DTA, TGA-FTIR and TGA-MS techniques

Abstract

© 2016 Elsevier B.V.In this research, combustion characterization and kinetics of four different origin crude oil samples were determined using thermogravimetry - differential thermal analysis (TGA-DTA) and thermogravimetry - Fourier transform infrared (TGA-FTIR) and thermogravimetry – mass spectrophotometry (TGA-MS) techniques. In the TGA-DTA analysis of crude oil samples, low temperature oxidation (LTO) and high temperature oxidation (HTO) reaction regions were observed in different temperature intervals. On the other hand, reaction regions, mass loss, and peak-burnout temperatures of the crude oil samples were also determined using TGA-DTA curves. In TGA-FTIR analysis, spectrums of crude oil samples were examined at different time intervals and composition of several hydrocarbon compounds was determined quantitatively. This research was also focused on the main volatile products (H2, H2O, CO, CO C6H6, SO2 etc…) of different origin crude oil samples on the basis of both their relative intensities and on their relevancy by using TGA-MS technique. Two different Arrhenius types of kinetic models were used in order to determine the kinetic triplets (activation energy, Arrhenius constant and reaction order) of crude oil samples studied. It was observed that in HTO region, higher activation energy values were observed depending on the °API gravities of the crude oils.

Country
Russian Federation
Related Organizations
Keywords

Mass spectrophotometry, Kinetics, Thermogravimetry, Combustion, Fourier-transform infrared, 540, 620, Crude oil

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!