Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CNR ExploRA
Article . 2004
Data sources: CNR ExploRA
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Progress in Energy and Combustion Science
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Article . 2004
Data sources: IRIS Cnr
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mild Combustion

Authors: Cavaliere A; de Joannon M;

Mild Combustion

Abstract

The Mild Combustion is characterized by both an elevated temperature of reactants and low temperature increase in the combustion process. These features are the results of several technological demands coming from different application fields. This review paper aims to collect information which could be useful in understanding the fundamentals and applications of Mild Combustion. The information in this field are still sparse, because of the recent identification of the process, so that many speculative considerations have been presented in order to make the whole framework more consistent and rich with potential new applications. A rigorous definition of Mild Combustion is preliminarily given in order to fix the input variables of the process. Under these constraints the influence of the physical, thermodynamic and chemical variables on the most relevant outlet parameters are analyzed. The physical aspects taken into account are atomization, evaporation, mixing and radiative heat transfer. In particular, the evolution of the mixing layer for high temperature diluted oxidant is analyzed. It is shown that mass fluxes through the stoichiometric isosurfaces are lower than those in not diluted conditions and that the annihilation of these isosurfaces is enhanced in the Mild Combustion conditions. Both effects infer low rates of heat release according to the experimental results reported in the literature. The thermodynamic aspects are dealt through the comparative analysis of the minimum, maximum and equilibrium temperature profiles versus the mixture fraction in the whole allowable range for the diluted and not-diluted cases. The chemical aspects have been analyzed in relation to the chemical kinetics rates for different oxidative routes and the temporal evolution of the self-ignition process. The molecular oxygen addition, the hydroperoxide dissociation and atomic hydrogen oxidation are evaluated in wide pressure and temperature ranges. In such a way self-ignition regimes which rely on different preferential chemical kinetics routes are identified and comparison between diluted/not diluted conditions are performed for a fixed evolution time. In this case it is shown that Mild Combustion conditions extend the pressure - temperature range, in which the oxidation is depressed, at relatively low pressure, whereas the 'ceiling temperature' is shifted to lower temperature for Mild Combustion condition at higher pressure. The second part of the review shows the potentialities of the diluted high temperature air combustion in applications related both to efficiency and pollution of thermal generation as well as to abatement of the pollutants along the flue gas stream of a primary combustion system. Some selected examples in these fields as land-base gas-turbines, boiler combustion chamber and domestic heating systems are presented. In these, the emphasis, is put preliminarily on aspects related more to efficiency than to pollution reduction, even though this target is implicitly taken into consideration. Then environmental benefits are dealt in relation to the major and minor species, either organic or inorganic, which can be produced in gas/liquid combustion. They include carbonaceous material, unburned hydrocarbons, nitrogen oxides and sulphur oxides. Finally, a classification of the possible processes relevant along the whole fuel transformation in Mild Combustion is given. In particular 'clean', 'cleaning', 'clearing' combustion processes are identified as a convenient categorization in relation to the incorporation of pre-combustion or post-combustion units in the main combustion systems.

Keywords

Mild Combustion, Combustion, Reactor, combustion technology, Mild Combustion; combustion technology, Hydrocarbons

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 0.1%
Top 0.1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!