
pmid: 15003217
The production of recombinant proteins in moss bioreactors provides all of the benefits of molecular farming in plants but avoids many plant-specific disadvantages, such as the genetic instability of de-differentiated cells in suspension culture or the lack of containment during field production. Protein yields are in the same range as those of other cell-culture-based production systems. On top of this, the moss Physcomitrella patens is the only known plant that can be genetically modified by homologous recombination, allowing efficient targeted gene disruption. Thus, the major drawback of producing human proteins in plants, allergic reactions caused by plant-specific glycosylation, can be diminished by targeted knockout of the responsible genes in moss. Unlike all other plants, moss allows straightforward 'humanisation' of plant-derived pharmaceuticals.
Bioreactors, Glycosylation, Bryophyta, Plants, Genetically Modified, Recombinant Proteins
Bioreactors, Glycosylation, Bryophyta, Plants, Genetically Modified, Recombinant Proteins
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 78 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
