
pmid: 14611960
Expansins are now generally accepted to be key regulators of wall extension during growth. Several alternative roles for expansins have emerged in which the emphasis of their action is on wall breakdown or softening in processes such as fruit ripening, pollination, germination and abscission. Expansins are commonly encoded by substantial gene families and have classically been divided into two subfamilies, referred to as alpha- and beta-expansins. Two further subfamilies have now been identified: gamma-expansins, which were first described in Arabidopsis, and delta-expansins, which were identified in rice and are absent from Arabidopsis. Both are truncated versions of alpha- and beta-expansins, with gamma-expansins representing the amino-terminal half of a mature expansin and delta-expansins the carboxy-terminal half of a beta-expansin. Functional roles for gamma- and delta-expansins have yet to be defined, although recent data indicate a signalling role for gamma-expansins.
Sequence Homology, Amino Acid, Molecular Sequence Data, Arabidopsis, Oryza, Cell Wall, Mutation, Amino Acid Sequence, Phylogeny, Plant Proteins, Signal Transduction
Sequence Homology, Amino Acid, Molecular Sequence Data, Arabidopsis, Oryza, Cell Wall, Mutation, Amino Acid Sequence, Phylogeny, Plant Proteins, Signal Transduction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 268 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
