Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pattern Recognition ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pattern Recognition Letters
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modeling label dependence for multi-label classification using the Choquistic regression

Authors: Ali Fallah Tehrani; Diane Ahrens;

Modeling label dependence for multi-label classification using the Choquistic regression

Abstract

This study addresses modeling non-linear dependency in multi-label classification by utilizing Choquistic regression.The Choquistic regression is a well-established model to detect non-linear dependencies.We propose a hyper model equipped by Choquistic regression.It allows to model positive and negative interactions on the use of label dependence. While an incorrect identification of underlying dependency in data can lead to a flawed conclusion, recognizing legitimate dependency allows for the opportunity to adapt a model in a correct manner. In this regard, modeling the inter-dependencies in multi-label classification (multi target prediction) is one of the challenging tasks from a machine learning point of view. While common approaches seek to exploit so-called correlated information from labels, this can be improved by assuming the interactions between labels. A well-known tool to model the interaction between attributes is the Choquet integral; it enables one to model non-linear dependencies between attributes. Beyond identifying proper prior knowledge in data (if such knowledge exists), establishing suitable models that are in agreement with prior knowledge is not always a trivial task. In this paper, we propose a first step towards modeling label dependencies for multi-target classifications in terms of positive and negative interactions. In the experimental, we demonstrate real gains by applying this approach.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!