Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pattern Recognitionarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pattern Recognition
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

A general framework for the statistical analysis of the sources of variance for classification error estimators

Authors: Juan Diego Rodríguez; Aritz Pérez Martínez; José Antonio Lozano 0001;

A general framework for the statistical analysis of the sources of variance for classification error estimators

Abstract

Estimating the prediction error of classifiers induced by supervised learning algorithms is important not only to predict its future error, but also to choose a classifier from a given set (model selection). If the goal is to estimate the prediction error of a particular classifier, the desired estimator should have low bias and low variance. However, if the goal is the model selection, in order to make fair comparisons the chosen estimator should have low variance assuming that the bias term is independent from the considered classifier. This paper follows the analysis proposed in [1] about the statistical properties of k-fold cross-validation estimators and extends it to the most popular error estimators: resubstitution, holdout, repeated holdout, simple bootstrap and 0.632 bootstrap estimators, without and with stratification. We present a general framework to analyze the decomposition of the variance of different error estimators considering the nature of the variance (irreducible/reducible variance) and the different sources of sensitivity (internal/external sensitivity). An extensive empirical study has been performed for the previously mentioned estimators with naive Bayes and C4.5 classifiers over training sets obtained from assorted probability distributions. The empirical analysis consists of decomposing the variances following the proposed framework and checking the independence assumption between the bias and the considered classifier. Based on the obtained results, we propose the most appropriate error estimations for model selection under different experimental conditions.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!