
The results of solar neutrino data from the first phase of Super-Kamiokande (SK-I) are presented. Super-Kamiokande can measure not only the solar neutrino flux but also its energy spectrum and time variations such as day-night and seasonal differences. The detail oscillation analysis using those information is appeared. Combining all the solar and KamLAND reactor data, the obtained oscillation parameters are determined as Δ m 2 = 8.3 × 10 −5 eV 2 and tan 2 θ = 0.38 . The recent results in the second phase of SK (SK-II) are also presented, and its flux, spectrum and time variation are consistent with SK-I. The possibility of future water cherenkov detectors, such as SK-III and Mega-ton class detector, are described. If the current neutrino oscillation parameter is assumed, its spectrum has deficit in the lower energy region. And the possibility of the day-night asymmetry is also discussed.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
