
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We study the properties of conformal operators in the SL(2) sector of planar N=4 SYM and its supersymmetric SL(2|2) extension. The correlation functions of these operators and their form factors with respect to asymptotic on-shell states are determined by two different polynomials which can be identified as eigenstates of the dilatation operator in the coordinate and momentum representations, respectively. We argue that, in virtue of integrability of the dilatation operator, the two polynomials satisfy a duality relation – they are proportional to each other upon an appropriate identification of momenta and coordinates. Combined with the conventional N=4 superconformal symmetry, this leads to the dual superconformal symmetry of the dilatation operator. We demonstrate that this symmetry is powerful enough to fix the eigenspectrum of the dilatation operator to the lowest order in the coupling. We use the relation between the one-loop dilatation operator and Heisenberg spin chain to show that, to lowest order in the coupling, the dual symmetry is generated by the Baxter Q-operator in the limit of large spectral parameter.
SCOAP3
High Energy Physics - Theory, Nuclear and High Energy Physics, High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, ddc:530, FOS: Physical sciences, QC770-798, 530 Physik
High Energy Physics - Theory, Nuclear and High Energy Physics, High Energy Physics - Theory (hep-th), Nuclear and particle physics. Atomic energy. Radioactivity, ddc:530, FOS: Physical sciences, QC770-798, 530 Physik
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 54 | |
downloads | 60 |