Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nuclear Physics Aarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nuclear Physics A
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

Supernovae from White Dwarfs Near Black Holes

Authors: Grant J. Mathews; James R. Wilson; David S.P. Dearborn;

Supernovae from White Dwarfs Near Black Holes

Abstract

We describe a new thermonuclear explosion model for Type I (or Type II) supernovae whereby relativistic terms enhance the self gravity of a carbon-oxygen white dwarf (or red-giant core) as it passes or orbits near a black hole. This relativistic compression can cause the central density to exceed the threshold for pycnonuclear or thermonuclear reactions so that an explosion ensues. We have considered three possible environments: 1) white dwarfs orbiting a low-mass (∼ 10 – 20 M ⊙ ) black hole; 2) white dwarfs encountering a massive (∼ 1 – 3 × 10 3 M ⊙ ) black hole in a dense globular cluster; and 3) white dwarfs passing a supermassive (∼ 10 6 – 10 9 M ⊙ ) black hole in a dense galactic core. We estimate the rate at which such events could occur to be significantly less than the rate of normal Type Ia supernovae for all three classes. Nevertheless, they should be frequent enough to warrant a search for this new class of supernova. We show results of three-dimensional thermonuclear burn calculations of white dwarfs or red-giant cores ignited near a supermassive black hole. Such an event might have produced the observed "mixed-morphology" Sgr A East supernova remnant (SNR) in the Galactic core.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!