
Light concentrators for the solar neutrino experiment Borexino and the Counting Test Facility (CTF) have been developed and constructed. They increase the light yield of these detectors by a factor of 2.5 and 8.8, respectively. Technical challenges like long term stability in various media, high reflectivity and radiopurity have been addressed and the concepts to overcome these difficulties will be described. Gamma spectroscopy measurements of the concentrators show an upper limit of 12e-6 Bq/g for uranium and a value of 120e-6 Bq/g for thorium. Upper limits on other possible contaminations like 26Al are presented. The impact of these results on the performance of Borexino and the CTF are discussed and it is shown that the design goals of both experiments are fulfilled.
submitted to Nuclear Instruments and Methods in Physics Research
Physics - Instrumentation and Detectors, FOS: Physical sciences, Instrumentation and Detectors (physics.ins-det)
Physics - Instrumentation and Detectors, FOS: Physical sciences, Instrumentation and Detectors (physics.ins-det)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
