Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurosciencearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuroscience
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Opposite regulation of metabotropic glutamate receptor 3 and metabotropic glutamate receptor 5 by inflammatory stimuli in cultured microglia and astrocytes

Authors: J V, Berger; A O, Dumont; M C, Focant; M, Vergouts; A, Sternotte; A-G, Calas; S, Goursaud; +1 Authors

Opposite regulation of metabotropic glutamate receptor 3 and metabotropic glutamate receptor 5 by inflammatory stimuli in cultured microglia and astrocytes

Abstract

Metabotropic glutamate receptors (mGluRs) were previously shown to modulate several essential functions in glial cells, including cell proliferation, glutamate uptake, neurotrophic support, and inflammatory responses. As these receptors are regularly proposed as promising targets for the treatment of a wide range of neurological disorders, we herein examined the reciprocal modulation of glial mGluRs by inflammation. Such regulation of mGluRs was also studied in cultures from an experimental model of amyotrophic lateral sclerosis (ALS). Indeed, ALS is characterized by increased neuroinflammation, and glial cell cultures derived from the animal model (rat expressing hSOD1(G93A)) show enhanced glial reactivity. Within 72 h, the pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 1β (IL-1β) induced an increase in mGluR3 and a decrease in mGluR5 gene expression. A similar regulation of these receptors was observed in microglia 48 h after an initial 4-h exposure to lipopolysaccharide. In hSOD1(G93A)-derived glial cultures, the gene up-regulation of mGluR3 (but not the gene down-regulation of mGluR5) was found to be enhanced in both astrocytes and microglia. Together, these results indicate that an inflammatory environment triggers an opposite regulation in the gene expression of the two predominant mGluR subtypes found in glial cells, and that these regulations were particularly robust in hSOD1(G93A) glial cultures. As neuroinflammation commonly occurs in several nervous diseases, its influence on mGluR expression should be taken into account when considering these receptors as future drug targets.

Related Organizations
Keywords

Receptor, Metabotropic Glutamate 5, Amyotrophic Lateral Sclerosis, Primary Cell Culture, Receptors, Metabotropic Glutamate, Rats, Rats, Sprague-Dawley, Animals, Newborn, Gene Expression Regulation, Astrocytes, Animals, Humans, Microglia, Inflammation Mediators, Rats, Transgenic

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    39
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
39
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!