Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neuropharmacologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neuropharmacology
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Non-invasive brain stimulation in neurological diseases

Authors: Robert, Schulz; Christian, Gerloff; Friedhelm C, Hummel;

Non-invasive brain stimulation in neurological diseases

Abstract

Non-invasive brain stimulation has shown its potential to modulate brain plasticity in humans. Endeavour has been made to utilize brain stimulation in neurological diseases to enhance adaptive processes and prevent potential maladaptive ones. In stroke for instance both sensorimotor and higher cognitive impairment, such as aphasia and neglect, has been addressed to facilitate functional recovery. In Parkinson's disease, brain stimulation has been evaluated to improve motor and non-motor symptoms. In the present review we provide an update of the field of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) as non-invasive brain stimulation techniques to improve motor and higher cognitive functions in patients suffering from stroke and Parkinson's disease. Rather than attempting to be comprehensive in regard of the reviewed scientific field, this article may be considered as a present day's framework of the application of non-invasive brain stimulation on selected examples of common neurological diseases. At the end we will briefly discuss open controversies and future directions of the field which has to be addressed in upcoming studies. This article is part of a Special Issue entitled 'Cognitive Enhancers'.

Keywords

Language Disorders, Magnetic Field Therapy, Animals, Humans, Electric Stimulation Therapy, Nervous System Diseases, Psychomotor Disorders, Cognition Disorders

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    162
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
162
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!