Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neurophysiologie Cli...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurophysiologie Clinique
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Proprioception and myoclonus

Authors: C, Rossi-Durand;

Proprioception and myoclonus

Abstract

This review focuses on sensory information originating from muscle spindles and its role in proprioception and motor control. The first part reminds of the structural and functional properties of these muscle mechanoreceptors, with arguments for an independent fusimotor command, i.e. the gamma-motoneurons, that would regulate spindle mechanical sensitivity in keeping with the requirements of ongoing motor action. The possibility that dysfunction of the fusimotor system might be responsible for clinical signs is discussed with respect to the hyperexcitability of the sensorimotor cortex that is observed in myoclonus of cortical origin. What is known about the spindle afferents projections into the spinal cord and about the dysfunction of the spinal sensorimotor networks in patients with neurological disorders, is put together in the second part. It is stressed on the significant complexity of the monosynaptic reflex in spite of its "simple" organization. The monosynaptic reflex constitutes the only possible way for testing the excitability of motoneurons and spinal networks. This method is extensively used clinically to examine changes in the nervous system with diseases. When studying changes from the norm, it is important to understand how the reflex functions in neurologically normal conditions. Different mechanisms such as pre-synaptic inhibition, post-activation depression and motoneuronal intrinsic properties are reviewed as they may induce changes in reflex amplitude and have therefore consequences for interpretation of spinal excitability.

Keywords

Myoclonus, Reflex, Stretch, Afferent Pathways, Motor Neurons, Gamma, Models, Neurological, Motor Cortex, Somatosensory Cortex, Proprioception, H-Reflex, Cats, Animals, Humans, Muscle Spindles

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!