Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nonlinear Analysis
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nonlinear Analysis
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Convergence of elastic flows of curves into manifolds

Authors: Marco Pozzetta;

Convergence of elastic flows of curves into manifolds

Abstract

For a given $p\in[2,+\infty)$, we define the $p$-elastic energy $\mathscr{E}$ of a closed curve $��:\mathbb{S}^1\to M$ immersed in a complete Riemannian manifold $(M,g)$ as the sum of the length of the curve and the $L^p$--norm of its curvature (with respect to the length measure). We are interested in the convergence of the $(L^p,L^{p'})$--gradient flow of these energies to critical points. By means of parabolic estimates, it is usually possible to prove sub-convergence of the flow, that is, convergence to critical points up to reparametrizations and, more importantly, up to isometry of the ambient. Assuming that the flow sub-converges, we are interested in proving the smooth convergence of the flow, that is, the existence of the full limit of the evolving flow. We first give an overview of the general strategy one can apply for proving such a statement. The crucial step is the application of a Lojasiewicz-Simon gradient inequality, of which we present a versatile version. Then we apply such strategy to the flow of $\mathscr{E}$ of curves into manifolds, proving the desired improvement of sub-convergence to full smooth convergence of the flow to critical points. As corollaries, we obtain the smooth convergence of the flow for $p=2$ in the Euclidean space $\mathbb{R}^n$, in the hyperbolic plane $\mathbb{H}^2$, and in the two-dimensional sphere $\mathbb{S}^2$. In particular, the result implies that such flow in $\mathbb{R}^n$ or $\mathbb{H}^2$ remains in a bounded region of the space for any time.

Country
Italy
Related Organizations
Keywords

Mathematics - Differential Geometry, Mathematics - Functional Analysis, Mathematics - Analysis of PDEs, Differential Geometry (math.DG), FOS: Mathematics, Analysis of PDEs (math.AP), Functional Analysis (math.FA)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green
bronze
Related to Research communities