
Abstract This paper is devoted to investigation of the Cauchy problem for nonlinear equations with a small parameter. They are actually small perturbations of linear elliptic equations in which case the Cauchy problem is ill-posed. To study the Cauchy problem we invoke purely nonlinear methods, such as successive iterations and L q Sobolev spaces with large q . We also discuss linearisable problems.
ddc:510, Institut für Mathematik
ddc:510, Institut für Mathematik
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
