<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.14243/44310 , 11379/42247 , 11571/223529
We develop the long-time analysis for gradient flow equations in metric spaces. In particular, we consider two notions of solutions for metric gradient flows, namely energy and generalized solutions. While the former concept coincides with the notion of curves of maximal slope, we introduce the latter to include limits of time-incremental approximations constructed via the Minimizing Movements approach. For both notions of solutions we prove the existence of the global attractor. Since the evolutionary problems we consider may lack uniqueness, we rely on the theory of generalized semiflows introduced by J.M. Ball. The notions of generalized and energy solutions are quite flexible and can be used to address gradient flows in a variety of contexts, ranging from Banach spaces to Wasserstein spaces of probability measures. We present applications of our abstract results by proving the existence of the global attractor for the energy solutions both of abstract doubly nonlinear evolution equations in reflexive Banach spaces, and of a class of evolution equations in Wasserstein spaces, as well as for the generalized solutions of some phase-change evolutions driven by mean curvature.
Mathematics(all), Analysis in metric spaces, Applied Mathematics, 510, Global attractor, Mathematics - Analysis of PDEs, Curves of maximal slope, Gradient flows in Wasserstein spaces, 35K55, FOS: Mathematics, Doubly nonlinear equations, Analysis in metric space, Gradient flows in Wasserstein space, Analysis of PDEs (math.AP)
Mathematics(all), Analysis in metric spaces, Applied Mathematics, 510, Global attractor, Mathematics - Analysis of PDEs, Curves of maximal slope, Gradient flows in Wasserstein spaces, 35K55, FOS: Mathematics, Doubly nonlinear equations, Analysis in metric space, Gradient flows in Wasserstein space, Analysis of PDEs (math.AP)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |