
A spanning tree of a graph is a connected subgraph on all vertices with the minimum number of edges. The number of spanning trees in a graph $G$ is given by Matrix Tree Theorem in terms of principal minors of Laplacian matrix of $G$. We show a similar combinatorial interpretation for principal minors of signless Laplacian $Q$. We also prove that the number of odd cycles in $G$ is less than or equal to $\frac{\det(Q)}{4}$, where the equality holds if and only if $G$ is a bipartite graph or an odd-unicyclic graph.
16 pages
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), 05C50, 65F18
FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), 05C50, 65F18
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
