
handle: 20.500.11824/93
Underwater images typically exhibit color distortion and low contrast as a result of the exponential decay that light suffers as it travels. Moreover, colors associated to different wavelengths have different attenuation rates, being the red wavelength the one that attenuates the fastest. To restore underwater images, we propose a Red Channel method, where colors associated to short wavelengths are recovered, as expected for underwater images, leading to a recovery of the lost contrast. The Red Channel method can be interpreted as a variant of the Dark Channel method used for images degraded by the atmosphere when exposed to haze. Experimental results show that our technique handles gracefully artificially illuminated areas, and achieves a natural color correction and superior or equivalent visibility improvement when compared to other state-of-the-art methods.
Dark Channel, Contrast enhancement, Attenuation, Image dehazing, Visibility recovery, Artificial lighting, Underwater image restoration, Underwater image degradation, Color correction
Dark Channel, Contrast enhancement, Attenuation, Image dehazing, Visibility recovery, Artificial lighting, Underwater image restoration, Underwater image degradation, Color correction
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 837 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.01% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
