
Proper and \(q\)-proper hypergeometric identities can be certified by checking a finite number \(n\) of initial values. The authors give a new method to estimate \(n\). The given examples show that the new estimates are smaller than the previous results.
Algebra and Number Theory, Generalized hypergeometric series, \({}_pF_q\), Height, Symbolic computation of special functions (Gosper and Zeilberger algorithms, etc.), Numerical verification, degree, Computational Mathematics, hypergeometric identities, Degree, numerical verification, Hypergeometric identities, height
Algebra and Number Theory, Generalized hypergeometric series, \({}_pF_q\), Height, Symbolic computation of special functions (Gosper and Zeilberger algorithms, etc.), Numerical verification, degree, Computational Mathematics, hypergeometric identities, Degree, numerical verification, Hypergeometric identities, height
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
