Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Proteomic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Proteomics
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exoproteome dynamics in Leishmania infantum

Authors: Anabela Cordeiro-da-Silva; Anabela Cordeiro-da-Silva; Gina Racine; Marc Ouellette; Ricardo Silvestre; Nuno Santarém;

Exoproteome dynamics in Leishmania infantum

Abstract

The exoproteome of Leishmania infantum is composed of parasite derived proteins present in the extracellular environment. Although the exoproteome might have a significant role in the precocious steps of infection little is known concerning its composition. We developed an approach enabling the in vitro recovery of the exoproteome from logarithmic and stationary L. infantum promastigotes. The recovered exoproteomes were further separated into two fractions, vesicles and vesicle depleted exoproteome, evaluating the fraction protein profile. Although the most abundant protein in all fractions was GP63, the protein composition of the separated fractions was distinct reflecting the origin of the fraction and the metabolic state of the parasites. The vesicle-derived exoproteome recovered from logarithmic parasites was significantly enriched in ribosomal proteins, indicating a potential role for these vesicles in protein turnover. Also, a stage specific enrichment of vesicles with properties related to apoptotic vesicles was observed in stationary phase parasites and evidence was obtained that the release of vesicles was increased in response to a death stimuli. This report on the exoproteome obtained from in vitro promastigote cultures provides new perspectives on Leishmania biology with the possibility of vesicles playing a major role in protein turnover and also in cell death.The first systematic insight into Leishmania exoproteome composition and the impact of the selected recovery approach.

Keywords

Proteomics, Proteome, Protozoan Proteins, Leishmania infantum

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!