
Consider the difference equations \[ x_{n+1}=\frac{A-Bx_{n-1}}{C+Dx_{n-2}},\;n=0,1,2,\dots,\tag{\(*\)} \] where \(A,B\) are nonnegative, \(D>0\) and \(C\) is a nonzero real number. Also, \(C+Dx_{n-2}\neq 0\) for all \(n\geq 0\). The author investigates the global attractivity, periodic nature, oscillation and boundedness of all admissible solutions of equation (\(*\)). Reviewer's remark: It is not necessary to write \(\mp C\) in the denominator. The two cases that arise can be considered and treated as one case.
asymptotic stability, Difference equation, Multiplicative and other generalized difference equations, Asymptotically stable, Stability theory for difference equations, attractivity, Growth, boundedness, comparison of solutions to difference equations, periodic solution, boundedness, Attractivity, Periodic solution, rational difference equation, Periodic solutions of difference equations
asymptotic stability, Difference equation, Multiplicative and other generalized difference equations, Asymptotically stable, Stability theory for difference equations, attractivity, Growth, boundedness, comparison of solutions to difference equations, periodic solution, boundedness, Attractivity, Periodic solution, rational difference equation, Periodic solutions of difference equations
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
