Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Lancaster EPrintsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Network and Computer Applications
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

BCON: Blockchain based access CONtrol across multiple conflict of interest domains

Authors: Gauhar Ali; Naveed Ahmad 0003; Yue Cao 0002; Qazi Ejaz Ali; Fazal Azim; Haitham S. Cruickshank;

BCON: Blockchain based access CONtrol across multiple conflict of interest domains

Abstract

Abstract In today's on-demand computing and virtual coalition environment, cross-domain services are acquired and provided. These business domains may belong to either the same or different conflict of interest system. “Transitive access” can cause leakage of information between competitors through some other conflict of interest system's member. Therefore, a secure access control mechanism is required to detect and deny “transitive access” efficiently with minimal trust in externalist. Existing access control mechanisms focused on either single or multiple conflict of interest domains but with no “transitive access”. In addition, these existing mechanisms are centralized with inherited unfair access control and are a single point of failure. Blockchain (BC) is a shared digital ledger encompassing a list of connected blocks stored on a decentralized distributed network that is secured through cryptography. We propose a BC based access control for conflict of interest domains. We have integrated a BC in our architecture to make access control fair, verifiable and decentralized. Users access histories and “transitive accesses” are stored on BC ledger. We propose a novel mechanism called “Transitive Access Checking and Enforcement (TACE)” i.e., “Algorithm.1”. It makes an authorization decision based on BC endorsement that “transitive access” will not occur. “Algorithm.2” verifies and updates users access histories stored at BC before each request approval. Similarly, “Algorithm.3” detects possible future “transitive accesses” and updates Transitive Access Set (TAS) stored at BC after each request approval. The Simple Promela Interpreter (SPIN) model checker is used to verify the proposed mechanisms for “transitive access” detection and prevention. We have identified four conflicting sequences of execution that can cause “transitive access”. Results show that the proposed mechanism is safe against “transitive access” by checking all the four possible conflicting sequences of execution.

Country
United Kingdom
Related Organizations
Keywords

004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%
Green
bronze