<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract Using a diffeomorphism between the unit sphere and a closed hyperplane of an infinite dimensional Banach space, we introduce the differentiation of a function defined on the unit sphere, and show that a continuous linear functional attains its norm if and only if it has a critical point on the unit sphere. Furthermore, we provide a strong version of the Bishop–Phelps–Bollobas theorem for a Lipschitz smooth Banach space.
Banach space, Differentiation, DIMENSIONAL HILBERT-SPACE, BANACH-SPACES, Bishop-Phelps theorem, SMOOTH, UNIT-SPHERE, Critical point
Banach space, Differentiation, DIMENSIONAL HILBERT-SPACE, BANACH-SPACES, Bishop-Phelps theorem, SMOOTH, UNIT-SPHERE, Critical point
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |