<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractWe consider a class of nonlinear lattices with nonlinear damping(0.1)u¨n(t)+(−1)pΔpun(t)+αun(t)+h(un(t))+g(n,u˙n(t))=fn, where n∈Z, t∈R+, α is a real positive constant, p is any positive integer and Δ is the discrete one-dimensional Laplace operator. Under suitable conditions on h and g we prove the existence of a global attractor for the continuous semigroup associated with (0.1). Our proofs are based on a difference inequality due to M. Nakao [M. Nakao, Global attractors for nonlinear wave equations with nonlinear dissipative terms, J. Differential Equations 227 (2006) 204–229].
Applied Mathematics, Nonlinear damping, Nonlinear lattices, Analysis, Global attractor
Applied Mathematics, Nonlinear damping, Nonlinear lattices, Analysis, Global attractor
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |