Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Luminesce...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Luminescence
Article . 2019
License: taverne
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Luminescence
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fine structure in high resolution 4f7–4f65d excitation and emission spectra of X-ray induced Eu2+ centers in LuPO4:Eu sintered ceramics

Authors: Justyna Zeler; Andries Meijerink; Dagmara Kulesza; Eugeniusz Zych;

Fine structure in high resolution 4f7–4f65d excitation and emission spectra of X-ray induced Eu2+ centers in LuPO4:Eu sintered ceramics

Abstract

X-ray induced effects in LuPO4:Eu3+ sintered thermoluminescent material were investigated by absorption and photoluminescence measurements between 20 and 300 K. Evidence for Eu3+→Eu2+ conversion upon exposure to X-rays was obtained as narrow band blue Eu2+ photoluminescence was observed. The low temperature luminescence of Eu2+ ions in X-rayed LuPO4:Eu ceramics showed a unique fine structure with a sharp zero-phonon line at 425.8 nm and well-resolved vibronic structure. Excitation spectra of the Eu2+ luminescence revealed a rich structure in which individual 4f7→ 4f6(7FJ)5d1 zero-phonon lines accompanied by vibronic transitions were identified. A detailed analysis allowed an accurate calculation of the Eu3+-like 4 f6(7FJ) core levels in the 4 f65d1 excited configuration. The 4f6 core splitting is different from that of the 7FJ states for Eu3+ in LuPO4, providing evidence for the role of 4f6–5d interaction on the splitting of the 4f6 configuration. The unique luminescence of Eu2+ with a small Stokes shift and well-determined energies of 4f6(7FJ)5d1 excited states make LuPO4:Eu a model system for testing theoretical models which are presently developed to calculate and predict the energy level structure and Stokes shift of 4fn–4fn−15d1 transitions of lanthanides.

Country
Netherlands
Related Organizations
Keywords

Biophysics, LuPO, Eu luminescence, General Chemistry, Condensed Matter Physics, Biochemistry, Atomic and Molecular Physics, and Optics, Zero-phonon line, Taverne, High resolution spectroscopy, 4f5d excited state

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Top 10%
Green
hybrid