<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
X-ray induced effects in LuPO4:Eu3+ sintered thermoluminescent material were investigated by absorption and photoluminescence measurements between 20 and 300 K. Evidence for Eu3+→Eu2+ conversion upon exposure to X-rays was obtained as narrow band blue Eu2+ photoluminescence was observed. The low temperature luminescence of Eu2+ ions in X-rayed LuPO4:Eu ceramics showed a unique fine structure with a sharp zero-phonon line at 425.8 nm and well-resolved vibronic structure. Excitation spectra of the Eu2+ luminescence revealed a rich structure in which individual 4f7→ 4f6(7FJ)5d1 zero-phonon lines accompanied by vibronic transitions were identified. A detailed analysis allowed an accurate calculation of the Eu3+-like 4 f6(7FJ) core levels in the 4 f65d1 excited configuration. The 4f6 core splitting is different from that of the 7FJ states for Eu3+ in LuPO4, providing evidence for the role of 4f6–5d interaction on the splitting of the 4f6 configuration. The unique luminescence of Eu2+ with a small Stokes shift and well-determined energies of 4f6(7FJ)5d1 excited states make LuPO4:Eu a model system for testing theoretical models which are presently developed to calculate and predict the energy level structure and Stokes shift of 4fn–4fn−15d1 transitions of lanthanides.
Biophysics, LuPO, Eu luminescence, General Chemistry, Condensed Matter Physics, Biochemistry, Atomic and Molecular Physics, and Optics, Zero-phonon line, Taverne, High resolution spectroscopy, 4f5d excited state
Biophysics, LuPO, Eu luminescence, General Chemistry, Condensed Matter Physics, Biochemistry, Atomic and Molecular Physics, and Optics, Zero-phonon line, Taverne, High resolution spectroscopy, 4f5d excited state
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |