<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We present a detailed investigation of the dynamics of impurity-trapped excitons in CaF2:Yb2+using transient photoluminescence enhancement induced via a two-frequency, sequential excitation process employing a UV optical parametric amplifier (OPA) synchronized to an infrared free electron laser (FEL). The temporal behaviour is well approximated by a multi-level rate equation model as relaxation between excited states of the exciton as well as a small contribution from local lattice heating by the FEL which becomes evident due to the 40 cm−1splitting of the exciton excited states giving rise to the transient photoluminescence enhancement itself.
Molecular Structure and Dynamics, Taverne
Molecular Structure and Dynamics, Taverne
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |