
We prove that finitely generated relatively hyperbolic groups are bi-exact if and only if all peripheral subgroups are bi-exact. This is a generalization of Ozawa's result which claims that finitely generated relatively hyperbolic groups are bi-exact if all peripheral subgroups are amenable.
Minor corrections. Appeared in Journal of Functional Analysis
Mathematics - Operator Algebras, FOS: Mathematics, Group Theory (math.GR), Operator Algebras (math.OA), Mathematics - Group Theory
Mathematics - Operator Algebras, FOS: Mathematics, Group Theory (math.GR), Operator Algebras (math.OA), Mathematics - Group Theory
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
