Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Functiona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Functional Analysis
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Functional Analysis
Article . 2016 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2016
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2014
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

Diffusion with nonlocal boundary conditions

Authors: Arendt, Wolfgang; Kunkel, Stefan; Kunze, Markus;

Diffusion with nonlocal boundary conditions

Abstract

We consider second order differential operators $A_��$ on a bounded, Dirichlet regular set $��\subset \mathbb{R}^d$, subject to the nonlocal boundary conditions \[ u(z) = \int_��u(x)\, ��(z, dx)\quad \mbox{for } z \in \partial ��. \] Here the function $��: \partial��\to \mathscr{M}^+(��)$ is $��(\mathscr{M} (��), C_b(��))$-continuous with $0\leq ��(z,��) \leq 1$ for all $z\in \partial ��$. Under suitable assumptions on the coefficients in $A_��$, we prove that $A_��$ generates a holomorphic positive contraction semigroup $T_��$ on $L^\infty(��)$. The semigroup $T_��$ is never strongly continuous, but it enjoys the strong Feller property in the sense that it consists of kernel operators and takes values in $C(\bar��)$. We also prove that $T_��$ is immediately compact and study the asymptotic behavior of $T_��(t)$ as $t \to \infty$.

18 pages, no figures; comments of the referees incorporated

Related Organizations
Keywords

Probability (math.PR), Transition functions, generators and resolvents, Functional Analysis (math.FA), nonlocal boundary conditions, Mathematics - Functional Analysis, 47D07, 60J35, 35B35, FOS: Mathematics, asymptotic behavior, diffusion process, Stability in context of PDEs, Markov semigroups and applications to diffusion processes, Mathematics - Probability

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Average
Green
hybrid