
AbstractIn this paper, we are concerned with Cauchy problems of fractional differential equations with Riemann–Liouville fractional derivatives in infinite-dimensional Banach spaces. We introduce the notion of fractional resolvent, obtain some its properties, and present a generation theorem for exponentially bounded fractional resolvents. Moreover, we prove that a homogeneous α-order Cauchy problem is well posed if and only if its coefficient operator is the generator of an α-order fractional resolvent, and we give sufficient conditions to guarantee the existence and uniqueness of weak solutions and strong solutions of an inhomogeneous α-order Cauchy problem.
Cauchy problem, Fractional resolvent, Well-posedness, Riemann–Liouville fractional derivative, Analysis
Cauchy problem, Fractional resolvent, Well-posedness, Riemann–Liouville fractional derivative, Analysis
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 151 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
