Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Econometr...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2008
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Econometrics
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diagnostic testing for cointegration

Authors: Peter Robinson;

Diagnostic testing for cointegration

Abstract

We develop a sequence of tests for specifying the cointegrating rank of, possibly fractional, multiple time series. Memory parameters of observables are treated as unknown, as are those of possible cointegrating errors. The individual test statistics have standard null asymptotics and are related to Hausman specification test statistics: when the memory parameter is common to several series, an estimate of this parameter based on the assumption of no cointegration achieves an efficiency improvement over estimates based on individual series, whereas if the series are cointegrated the former estimate is generally inconsistent. However, a computationally simpler but asymptotically equivalent approach, which avoids explicit computation of the “efficient” estimate, is instead pursued here. Two versions of it are initially proposed, followed by one that robustifies to possible inequality between memory parameters of observables. Throughout, a semiparametric approach is pursued, modelling serial dependence only at frequencies near the origin, with the goal of validity under broad circumstances and computational convenience. The main development is in terms of stationary series, but an extension to non-stationary ones is also described. The algorithm for estimating cointegrating rank entails carrying out such tests based on potentially all subsets of two or more of the series, though outcomes of previous tests may render some or all subsequent ones unnecessary. A Monte Carlo study of finite sample performance is included.

Related Organizations
Keywords

Fractional cointegration; Diagnostic testing; Specification testing; Cointegrating rank; Semiparametric estimation., Fractional cointegration, Diagnostic testing, Specificationtesting, Cointegrating rank, Semiparametric estimation., Social Sciences & Humanities, jel: jel:C32

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Top 10%
Average
Green
bronze
Related to Research communities