<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this paper we introduce the hyperbolic mean curvature flow and prove that the corresponding system of partial differential equations are strictly hyperbolic, and based on this, we show that this flow admits a unique short-time smooth solution and possesses the nonlinear stability defined on the Euclidean space with dimension larger than 4. We derive nonlinear wave equations satisfied by some geometric quantities related to the hyperbolic mean curvature flow. Moreover, we also discuss the relation between the equations for hyperbolic mean curvature flow and the equations for extremal surfaces in the Minkowski space-time.
16 pages, 2 figures, finished on 4 February 2008
Mathematics - Differential Geometry, Differential Geometry (math.DG), 58J45, 58J47, FOS: Mathematics, Short-time existence, Nonlinear stability, Extremal surface, Analysis, Hyperbolic mean curvature flow
Mathematics - Differential Geometry, Differential Geometry (math.DG), 58J45, 58J47, FOS: Mathematics, Short-time existence, Nonlinear stability, Extremal surface, Analysis, Hyperbolic mean curvature flow
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 33 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |