
AbstractIn this paper, we study the relationship between forbidden subgraphs and the existence of a matching. Let H be a set of connected graphs, each of which has three or more vertices. A graph G is said to be H-free if no graph in H is an induced subgraph of G. We completely characterize the set H such that every connected H-free graph of sufficiently large even order has a perfect matching in the following cases.(1)Every graph in H is triangle-free.(2)H consists of two graphs (i.e. a pair of forbidden subgraphs).A matching M in a graph of odd order is said to be a near-perfect matching if every vertex of G but one is incident with an edge of M. We also characterize H such that every H-free graph of sufficiently large odd order has a near-perfect matching in the above cases.
Computational Theory and Mathematics, Discrete Mathematics and Combinatorics, Near-perfect matching, Forbidden subgraph, Perfect matching, Theoretical Computer Science
Computational Theory and Mathematics, Discrete Mathematics and Combinatorics, Near-perfect matching, Forbidden subgraph, Perfect matching, Theoretical Computer Science
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
