Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of St And...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
St Andrews Research Repository
Article . 2024 . Peer-reviewed
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Combinatorial Theory Series A
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the difference of the enhanced power graph and the power graph of a finite group

Authors: Sucharita Biswas; Peter J. Cameron; Angsuman Das; Hiranya Kishore Dey;

On the difference of the enhanced power graph and the power graph of a finite group

Abstract

Funding: The first author is supported by the PhD fellowship of CSIR (File no. 08/155 (0086)/2020 − EMR − I), Govt. of India. The second author acknowledges the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme Groups, representations and applications: new perspectives (supported by EPSRC grant no. EP/R014604/1), where he held a Simons Fellowship. The third author acknowledges the funding of DST grant SR/F ST/MS − I/2019/41 and MT R/2022/000020, Govt. of India. The fourth author acknowledges SERB-National Post-Doctoral Fellowship (File No. PDF/2021/001899) during the preparation of this work. The difference graph of a finite group D (G) is the difference of the enhanced power graph of G and the power graph of G, where all isolated vertices are removed. In this paper we study the connectedness and perfectness of D (G) with respect to various properties of the underlying group G. We also find several connections between the difference graph of G and the Gruenberg-Kegel graph of G. We also examine the operation of twin reduction on graphs, a technique which produces smaller graphs which may be easier to analyze. Applying this technique to simple groups can have a number of outcomes, not fully understood, but including some graphs with large girth. Peer reviewed

Keywords

Q Science, 330, Power graph, General Mathematics, Q, Gruenberg-Kegel graph (prime graph), 004, 510, T-DAS, Enhanced power graph, Twin reduction, Mathematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green