
We consider the following solitaire game whose rules are reminiscent of the children's game of leapfrog. The player is handed an arbitrary ordering $π=(x_1,x_2,...,x_n)$ of the elements of a finite poset $(P,\prec)$. At each round an element may "skip over" the element in front of it, i.e. swap positions with it. For example, if $x_i \prec x_{i+1}$, then it is allowed to move from $π$ to the ordering $(x_1,x_2,...,x_{i-1},x_{i+1},x_i,x_{i+2},...,x_n)$. The player is to carry out such steps as long as such swaps are possible. When there are several consecutive pairs of elements that satisfy this condition, the player can choose which pair to swap next. Does the order of swaps matter for the final ordering or is it uniquely determined by the initial ordering? The reader may guess correctly that the latter proposition is correct. What may be more surprising, perhaps, is that this question is not trivial. The proof works by constructing an appropriate system of invariants.
Previously titled Leapfrog in Posets
Poset, Computational Theory and Mathematics, Strong convergence, FOS: Mathematics, Discrete Mathematics and Combinatorics, Mathematics - Combinatorics, Order, Combinatorics (math.CO), Theoretical Computer Science
Poset, Computational Theory and Mathematics, Strong convergence, FOS: Mathematics, Discrete Mathematics and Combinatorics, Mathematics - Combinatorics, Order, Combinatorics (math.CO), Theoretical Computer Science
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
