Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Colloid a...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Colloid and Interface Science
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the interfacial lithium dynamics in Li7La3Zr2O12:poly(ethylene oxide) (LiTFSI) composite polymer-ceramic solid electrolytes under strong polymer phase confinement

Authors: Rincón, M.; Cortés, H.E.; Carrasco, J.; Akhmatskaya, E.; Garcia, F.;

On the interfacial lithium dynamics in Li7La3Zr2O12:poly(ethylene oxide) (LiTFSI) composite polymer-ceramic solid electrolytes under strong polymer phase confinement

Abstract

A better molecular-level understanding of Li+ diffusion through ceramic/polymer interfaces is key to design high-performance composite solid-state electrolytes for all-solid-state batteries. By considering as a case study a composite electrolyte constituted by Li+ conductive Ga3+ doped-Li7La3Zr2O12 (LLZO) garnet fillers embedded within a poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl) imide polymer matrix (PEO(LiTFSI)), we investigate Li+ interfacial dynamics at conditions of high polymer confinement, with large filler particles in a fully amorphous polymer phase. Such confinement scenario is aimed to capture the conditions near the percolation threshold, at which conductivity enhancement is often reported. Using molecular dynamics simulations combined with the generalized shadow hybrid Monte Carlo method and umbrella sampling calculations, we explain why the hopping towards the polymer phase of the Li+ sitting on the LLZO surface is thermodynamically hindered, while hopping of Li+ from the polymer to the LLZO is kinetically slowed-down by rigidified polymer near the interface. In addition, we demonstrate how the overlap of LLZO-bound polymer chains at high confinement leads to a decrease of Li+ diffusivity within the interstitial space. We put forward that these insights are relevant to interpret the variation of ionic conductivity as a function of volume fraction and filler particle sizes also below the glass transition temperature of the polymer, at the typical operating conditions of lithium ion batteries.

Keywords

Polymer-ceramic electrolytes, Hybrid Monte Carlo, Molecular dynamics, Umbrella sampling, Interfacial lithium transport, Solid-state lithium ion batteries

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?