Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Algorithm...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Algorithms
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
INRIA2
Article . 2004
Data sources: INRIA2
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Distance labeling in graphs

Authors: Gavoille, Cyril; Peleg, David; Pérennes, Stéphane; Raz, Ran;

Distance labeling in graphs

Abstract

Summary: We consider the problem of labeling the nodes of a graph in a way that will allow one to compute the distance between any two nodes directly from their labels (without using any additional information). Our main interest is in the minimal length of labels needed in different cases. We obtain upper and lower bounds for several interesting families of graphs. In particular, our main results are the following. For general graphs, we show that the length needed is \(\Theta(n)\). For trees, we show that the length needed is \(\Theta(\log^{2}n)\). For planar graphs, we show an upper bound of \(0(\sqrt n\log n)\) and a lower bound of \(\Omega(n^{1/3})\). For bounded degree graphs, we show a lower bound of \(\Omega(\sqrt n)\). The upper bounds for planar graphs and for trees follow by a more general upper bound for graphs with a \(r(n)\)-separator. The two lower bounds, however, are obtained by two different arguments that may be interesting in their own right. We also show some lower bounds on the length of the labels, even if it is only required that distances be approximated to a multiplicative factor s. For example, we show that for general graphs the required length is \(\Omega(n)\) for every \(s<3\). We also consider the problem of the time complexity of the distance function once the labels are computed. We show that there are graphs with optimal labels of length \(3\log n\), such that if we use any labels with fewer than \(n\) bits per label, computing the distance function requires exponential time. A similar result is obtained for planar and bounded degree graphs.

Keywords

[INFO.INFO-OH] Computer Science [cs]/Other [cs.OH], Graph labelling (graceful graphs, bandwidth, etc.), time complexity, Graph theory (including graph drawing) in computer science, Analysis of algorithms and problem complexity, bounded degree graphs

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    146
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
146
Top 10%
Top 1%
Top 10%
bronze