<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Suppose $F$ is a field with valuation $v$ and valuation ring $O_{v}$, $E$ is a finite field extension and $w$ is a quasi-valuation on $E$ extending $v$. We study quasi-valuations on $E$ that extend $v$; in particular, their corresponding rings and their prime spectrums. We prove that these ring extensions satisfy INC (incomparability), LO (lying over), and GD (going down) over $O_{v}$; in particular, they have the same Krull Dimension. We also prove that every such quasi-valuation is dominated by some valuation extending $v$. Under the assumption that the value monoid of the quasi-valuation is a group we prove that these ring extensions satisfy GU (going up) over $O_{v}$, and a bound on the size of the prime spectrum is given. In addition, a 1:1 correspondence is obtained between exponential quasi-valuations and integrally closed quasi-valuation rings. Given $R$, an algebra over $O_{v}$, we construct a quasi-valuation on $R$; we also construct a quasi-valuation on $R \otimes_{O_{v}} F$ which helps us prove our main Theorem. The main Theorem states that if $R \subseteq E$ satisfies $R \cap F=O_{v}$ and $E$ is the field of fractions of $R$, then $R$ and $v$ induce a quasi-valuation $w$ on $E$ such that $R=O_{w}$ and $w$ extends $v$; thus $R$ satisfies the properties of a quasi-valuation ring.
51 pages
Algebra and Number Theory, Going up, Exponential quasi-valuation, Quasi-valuation, Lying over, Mathematics - Commutative Algebra, Commutative Algebra (math.AC), Going down, FOS: Mathematics, Prime spectrum, Cut monoid, Krull dimension
Algebra and Number Theory, Going up, Exponential quasi-valuation, Quasi-valuation, Lying over, Mathematics - Commutative Algebra, Commutative Algebra (math.AC), Going down, FOS: Mathematics, Prime spectrum, Cut monoid, Krull dimension
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |