Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Algebraarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Algebra
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Algebra
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Algebra
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2010
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2009
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
https://dx.doi.org/10.5167/uzh...
Other literature type . 2010
Data sources: Datacite
https://dx.doi.org/10.5167/uzh...
Other literature type . 2010
Data sources: Datacite
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Boundedness of cohomology

Authors: Brodmann-Maeder, Monika; Jahangiri, M; Linh, C H;

Boundedness of cohomology

Abstract

Let $d \in \N$ and let $\D^d$ denote the class of all pairs $(R,M)$ in which $R = \bigoplus_{n \in \N_0} R_n$ is a Noetherian homogeneous ring with Artinian base ring $R_0$ and such that $M$ is a finitely generated graded $R$-module of dimension $\leq d$. The cohomology table of a pair $(R,M) \in \D^d$ is defined as the family of non-negative integers $d_M:= (d^i_M(n))_{(i,n) \in \N \times \Z}$. We say that a subclass $\mathcal{C}$ of $\D^d$ is of finite cohomology if the set $\{d_M \mid (R,M) \in \C\}$ is finite. A set $\mathbb{S} \subseteq \{0,... ,d-1\}\times \Z$ is said to bound cohomology, if for each family $(h^��)_{��\in \mathbb{S}}$ of non-negative integers, the class $\{(R,M) \in \D^d\mid d^i_M(n) \leq h^{(i,n)} {for all} (i,n) \in \mathbb{S}\}$ is of finite cohomology. Our main result says that this is the case if and only if $\mathbb{S}$ contains a quasi diagonal, that is a set of the form $\{(i,n_i)| i=0,..., d-1\}$ with integers $n_0> n_1 > ... > n_{d-1}$. We draw a number of conclusions of this boundedness criterion.

18 pages

Related Organizations
Keywords

Local cohomology, Algebra and Number Theory, Sheaf cohomology, Graded modules, sheaf cohomology, Mathematics - Commutative Algebra, Commutative Algebra (math.AC), local cohomology, graded modules, Finiteness of cohomology, 10123 Institute of Mathematics, Mathematics - Algebraic Geometry, 510 Mathematics, Local cohomology and commutative rings, FOS: Mathematics, 13D45, 14B15, Projective schemes, Algebraic Geometry (math.AG), 2602 Algebra and Number Theory, projective schemes, finiteness of cohomology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid