Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Algebraarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Algebra
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Algebra
Article . 2007
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Algebra
Article . 2007 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2007
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On cohomology isomorphisms of groups

On cohomology isomorphisms of groups.
Authors: Symonds, Peter;

On cohomology isomorphisms of groups

Abstract

The author proves the following theorem for a wide class of groups including finite groups, compact Lie groups, groups of finite virtual cohomological dimension over \(\mathbb{F}_p\) and profinite groups. Theorem. Let \(f\colon H\to G\) be a homomorphism such that the induced map \(f^*\colon H^*(G;\mathbb{F}_p)\to H^*(H;\mathbb{F}_p)\) is an isomorphism in high degrees. Then \(f\) induces an equivalence of categories \(\mathcal S_p(H)\to\mathcal S_p(G)\), where \(\mathcal S_p\) denotes the category of \(p\)-subgroups with the morphisms induced by inclusion and conjugation. This was proved by \textit{G. Mislin} for compact Lie groups [Comment. Math. Helv. 65, No. 3, 454-461 (1990; Zbl 0713.55009)] and by \textit{C.-N. Lee} for groups of finite virtual cohomological dimension [Topology 33, No. 4, 721-728 (1994; Zbl 0823.55013)]. These proofs used some deep topological methods. Here the author takes a more algebraic approach, which enables him to prove the theorem for groups of finite virtual cohomological dimension and profinite groups. The proof uses \textit{J. Lannes}'s \(T\)-functor [Cohomology of groups and function spaces, unpublished notes (1986)].

Related Organizations
Keywords

Homological methods in group theory, Algebra and Number Theory, Classifying spaces of groups and \(H\)-spaces in algebraic topology, T-functor, Cohomology, finite groups, equivalences of categories, cohomology of groups, compact Lie groups, Cohomology of groups, profinite groups, groups of finite virtual cohomological dimension

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Average
hybrid