Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RIUMA - Repositorio ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Information and Software Technology
Article . 2013 . Peer-reviewed
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

Estimating software testing complexity

Authors: Javier Ferrer; Francisco Chicano; Enrique Alba 0001;

Estimating software testing complexity

Abstract

Context: Complexity measures provide us some information about software artifacts. A measure of the difficulty of testing a piece of code could be very useful to take control about the test phase. Objective: The aim in this paper is the definition of a new measure of the difficulty for a computer to gen erate test cases, we call it Branch Coverage Expectation (BCE). We also analyze the most common com plexity measures and the most important features of a program. With this analysis we are trying to discover whether there exists a relationship between them and the code coverage of an automatically generated test suite. Method: The definition of this measure is based on a Markov model of the program. This model is used not only to compute the BCE, but also to provide an estimation of the number of test cases needed to reach a given coverage level in the program. In order to check our proposal, we perform a theoretical val idation and we carry out an empirical validation study using 2600 test programs. Results: The results show that the previously existing measures are not so useful to estimate the difficulty of testing a program, because they are not highly correlated with the code coverage. Our proposed mea sure is much more correlated with the code coverage than the existing complexity measures. Conclusion: The high correlation of our measure with the code coverage suggests that the BCE measure is a very promising way of measuring the difficulty to automatically test a program. Our proposed measure is useful for predicting the behavior of an automatic test case generator.

This work has been partially funded by the Spanish Ministry of Science and Innovation and FEDER under contract TIN2011-28194 (the roadME project)

Country
Spain
Related Organizations
Keywords

330, Ingeniería del software, Evolutionary testing, Soporte lógico, 004, Computación evolutiva

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Average
Green
bronze