Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NanoImpactarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
NanoImpact
Article . 2023 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
NanoImpact
Article . 2023
versions View all 2 versions
addClaim

Trophic transfer of nanomaterials and their effects on high-trophic-level predators

Authors: Fei, Dang; Yuan, Yuan; Yingnan, Huang; Yujun, Wang; Baoshan, Xing;

Trophic transfer of nanomaterials and their effects on high-trophic-level predators

Abstract

Nanotechnology offers great opportunities for numerous sectors in society. One important challenge in sustainable nanotechnology is the potential of trophic transfer of nanomaterials (NMs), which may lead to unintentional impacts on environmental and human health. Here, we highlight the key advances that have been made in recent 15 years with respect to trophic transfer of heterogeneous NMs, including metal-based NMs, carbon-based NMs and nanoplastics, across various aquatic and terrestrial food chains. Particle number-based trophic transfer factors (TTFs), rather than the variable mass-based TTFs, capture the particle-specific transfer, for which NMs exhibit dynamic and complex biotransformation (e.g., dissolution, sulfidation, reduction, and corona formation). Trophic transfer of NMs has toxicological significance to predators at molecular (e.g., increased oxidative stress and modified metabolites), physiological (e.g., feeding inhibition) and population (e.g., reproduction inhibition) levels. However, linking NM exposure and toxicity remains a challenge, partly due to the dynamic biotransformation along the food chain. Although NMs have been used to increase crop yield in agriculture, they can exert detrimental impacts on crop yield and modify crop quality, depending on NMs type, exposure dose, and crop species, with unknown consequences to human health via crop consumption. Given this information, we describe the challenges and opportunities in understanding the significance of NMs trophic transfer to develop more sustainable, effective and safer nanotechnology.

Related Organizations
Keywords

Food Chain, Metals, Humans, Nutritional Status, Nanostructures

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!