Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Non-Linear Mechanics
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: CC BY
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The iterative transformation method

Authors: Riccardo Fazio;

The iterative transformation method

Abstract

In a transformation method, the numerical solution of a given boundary value problem is obtained by solving one or more related initial value problems. Therefore, a transformation method, like a shooting method, is an initial value method. The main difference between a transformation and a shooting method is that the former is conceived and derive its formulation from the scaling invariance theory. This paper is concerned with the application of the iterative transformation method to several problems in the boundary layer theory. The iterative method is an extension of the T{��}pfer's non-iterative algorithm developed as a simple way to solve the celebrated Blasius problem. This iterative method provides a simple numerical test for the existence and uniqueness of solutions. Here we show how the method can be applied to problems with a homogeneous boundary conditions at infinity and in particular we solve the Sakiadis problem of boundary layer theory. Moreover, we show how to couple our method with Newton's root-finder. The obtained numerical results compare well with those available in the literature. The main aim here is that any method developed for the Blasius, or the Sakiadis, problem might be extended to more challenging or interesting problems. In this context, the iterative transformation method has been recently applied to compute the normal and reverse flow solutions of Stewartson for the Falkner-Skan model [Comput. \& Fluids, {\bf 73} (2013) pp. 202-209].

48 pages, 12 figures, 7 tables. arXiv admin note: substantial text overlap with arXiv:1212.5057, arXiv:1410.2043, arXiv:2003.07730

Country
Italy
Related Organizations
Keywords

65L10, 65L08, 34B40, 76D10, BVPs on infinite intervals, Blasius problem, Toepfer's algorithm, Sakiadis and Stewartson problems, Iterative transformation method, FOS: Mathematics, Mathematics - Numerical Analysis, Numerical Analysis (math.NA)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
bronze