Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

An investigation of the electrochemical properties of PVD TiN-coated SS410 in simulated PEM fuel cell environments

Authors: Y WANG; D NORTHWOOD;

An investigation of the electrochemical properties of PVD TiN-coated SS410 in simulated PEM fuel cell environments

Abstract

Abstract Bipolar plates are a key component of PEM fuel cells, and they constitute a large portion of the weight and total cost of a fuel cell stack. In order to reduce both the cost and weight of the bipolar plates, considerable attention is being paid to developing metallic bipolar plates to replace non-porous graphite. In this study, TiN was coated on a martensitic stainless steel (SS410) using a PVD technology (plasma enhanced reactive evaporation) to increase the corrosion resistance of the base metal. XRD, SEM, EIS and potentiodynamic tests were used to characterize the TiN-coated SS410. In order to investigate the suitability of these coated materials as the anodes and cathodes in a PEMFC, potentiostatic tests were conducted under both simulated cathode and anode conditions. The simulated anode environment was - 0.1 V vs SCE purged with H 2 and the simulated cathode environment was 0.6 V vs SCE purged with O 2 . The dense TiN coatings formed on SS410 much improved the corrosion resistance of SS410 and, thus, these coated materials could potentially be used in PEMFCs as a bipolar plate material provided they also satisfy the other physical and mechanical property requirements such as interfacial contact resistance, light weight, high mechanical strength and manufacturability.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    121
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
121
Top 1%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!