Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IFAC-PapersOnLinearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IFAC-PapersOnLine
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IFAC-PapersOnLine
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurocomputing
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Prediction of Protein-RNA Interactions Using Sequence and Structure Descriptors**This work was partially supported by the National Natural Science Foundation of China (NSFC) Grant No. 31100949, the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China, the Fundamental Research Funds of Shandong University Grant No. 2014TB006, University of Rochester Center for AIDS Research Grant P30 AI078498 (NIH/NIAID) and NIH R01 Grant GM100788-01.

Authors: Zhi-Ping Liu; Hongyu Miao;

Prediction of Protein-RNA Interactions Using Sequence and Structure Descriptors**This work was partially supported by the National Natural Science Foundation of China (NSFC) Grant No. 31100949, the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China, the Fundamental Research Funds of Shandong University Grant No. 2014TB006, University of Rochester Center for AIDS Research Grant P30 AI078498 (NIH/NIAID) and NIH R01 Grant GM100788-01.

Abstract

Protein-RNA interactions play critical roles in numerous biological processes such as posttranscriptional regulation and protein synthesis. However, experimental screening of protein-RNA interactions is usually laborious and time-consuming. It is therefore desirable to develop efficient bioinformatics methods to predict protein-RNA interactions, which can provide valuable hints for future experimental design and advance our understanding of the interaction mechanisms. In this study, we propose a novel method for predicting protein-RNA interactions based on both sequence and structure descriptors of protein and RNA (e.g., the sequence-based physicochemical features, the secondary and three-dimensional structure-based features). We train and compare several classifiers using these descriptors on several benchmark datasets, and the random forest method is selected to build an efficient predictor of protein-RNA interactions. We conduct further cross-validation and case studies, and the results clearly suggest the efficacy of the proposed method. A novel computational method is proposed for predicting protein-RNA interactions.The efficiency and advantage are shown in multiple benchmarks and comparison studies.Case studies in protein-miRNA/lncRNA interactions demonstrate its powerful prediction ability.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Average
Average
gold