
arXiv: 0905.3750
To date, no accretion model has succeeded in reproducing all observed constraints in the inner Solar System. These constraints include 1) the orbits, in particular the small eccentricities, and 2) the masses of the terrestrial planets -- Mars' relatively small mass in particular has not been adequately reproduced in previous simulations; 3) the formation timescales of Earth and Mars, as interpreted from Hf/W isotopes; 4) the bulk structure of the asteroid belt, in particular the lack of an imprint of planetary embryo-sized objects; and 5) Earth's relatively large water content, assuming that it was delivered in the form of water-rich primitive asteroidal material. Here we present results of 40 high-resolution (N=1000-2000) dynamical simulations of late-stage planetary accretion with the goal of reproducing these constraints, although neglecting the planet Mercury. We assume that Jupiter and Saturn are fully-formed at the start of each simulation, and test orbital configurations that are both consistent with and contrary to the "Nice model." We find that a configuration with Jupiter and Saturn on circular orbits forms low-eccentricity terrestrial planets and a water-rich Earth on the correct timescale, but Mars' mass is too large by a factor of 5-10 and embryos are often stranded in the asteroid belt. A configuration with Jupiter and Saturn in their current locations but with slightly higher initial eccentricities (e = 0.07-0.1) produces a small Mars, an embryo-free asteroid belt, and a reasonable Earth analog but rarely allows water delivery to Earth. None of the configurations we tested reproduced all the observed constraints. (abridged)
Accepted to Icarus. 21 pages, 12 figures, 5 tables in emulateapj format. Figures 3 and 4 degraded. For full-resolution see http://casa.colorado.edu/~raymonsn/ms_emulateapj.pdf
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Earth and Planetary Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 361 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
