Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hearing Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hearing Research
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Abnormal speech processing in frequency regions where absolute thresholds are normal for listeners with high-frequency hearing loss

Authors: Léger, Agnés C.; Moore, Brian C J; Lorenzi, Christian;

Abnormal speech processing in frequency regions where absolute thresholds are normal for listeners with high-frequency hearing loss

Abstract

The ability to understand speech in quiet and in a steady noise was measured for 26 listeners with audiometric thresholds below 30 dB HL for frequencies up to 3 kHz and covering a wide range (0-80 dB HL) between 3 and 8 kHz. The stimulus components were restricted to the low (≤1.5 kHz) and middle (1-3 kHz) frequency regions, where audiometric thresholds were classified clinically as normal or near-normal. Sensitivity to inter-aural phase was measured at 0.5 and 0.75 kHz and otoacoustic emission and brainstem responses were measured. For each frequency region, about half of the listeners with high-frequency hearing loss showed extremely poor intelligibility for speech in quiet and in noise. These deficits could not be accounted for by reduced audibility. Scores for speech in quiet were correlated with age, audiometric thresholds at low and at high frequencies, the amplitude of transient otoacoustic emissions in the mid-frequency region, but not with inter-aural phase discrimination. The results suggest that large speech deficits may be observed in regions of normal or near-normal hearing for hearing-impaired listeners. They also suggest that speech deficits may result from suprathreshold auditory deficits caused by outer hair-cell damage and by factors associated with aging.

Country
United Kingdom
Keywords

Adult, Male, Aging, Hearing Loss, Sensorineural, Otoacoustic Emissions, Spontaneous, Auditory Threshold, Middle Aged, Young Adult, Audiometry, Evoked Potentials, Auditory, Brain Stem, Speech Discrimination Tests, Speech Perception, Humans, Female, Hearing Loss, High-Frequency, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!