Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hearing Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hearing Research
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Hearing Research
Article . 2007
versions View all 2 versions
addClaim

Effects of auditory pathway anatomy and deafness characteristics? (1): On electrically evoked auditory brainstem responses

Authors: Jeanne, Guiraud; Stéphane, Gallego; Laure, Arnold; Patrick, Boyle; Eric, Truy; Lionel, Collet;

Effects of auditory pathway anatomy and deafness characteristics? (1): On electrically evoked auditory brainstem responses

Abstract

The purpose of this study was to distinguish the effects of different parameters on latencies of wave IIIe, wave Ve, and interpeak interval IIIe-Ve of electrical auditory brainstem responses (EABRs). EABRs were recorded from all the intra-cochlear electrodes in eight adult HiRes90K((R)) cochlear implant users. The relationship between latencies and stimulation sites in the cochlea was characterized to assess activity along the auditory pathway. Audiograms before implantation, psychophysics at first fitting and duration of deafness were used to describe the influence of deafness on latencies. A decreasing baso-apical latency gradient was found for waves IIIe and Ve, while the interpeak interval IIIe-Ve remained the same along the electrode array. Electrical stimulation enabling to stimulate various parts of the cochlea at the same time, this could indicate an anatomical way of compensating for the delay the acoustic wave takes to reach the cochlea apex in a non-implanted ear. However, psychophysical levels were also found to increase at the cochlear base showing that the latency gradient could result from an increasing gradient of neural degeneration toward the base. Correlations of EABR latencies with psychophysics, audiometric data and duration of deafness show that factors linked to deafness have indeed an influence on EABR latencies. The possible explanations for the latency shift observed, whether they are anatomical and/or pathological, are exposed.

Keywords

Adult, Male, Auditory Pathways, Adolescent, Auditory Threshold, Deafness, Middle Aged, Cochlear Implants, Evoked Potentials, Auditory, Brain Stem, Humans, Female, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!