Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geometry and Physics
Article . 2021 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Spin group in superspace

The spin group in superspace
Authors: De Schepper, Hennie; Guzmán Adán, Ali; Sommen, Franciscus;

The Spin group in superspace

Abstract

There are two well-known ways of describing elements of the rotation group SO$(m)$. First, according to the Cartan-Dieudonn\'e theorem, every rotation matrix can be written as an even number of reflections. And second, they can also be expressed as the exponential of some anti-symmetric matrix. In this paper, we study similar descriptions of a group of rotations SO${}_0$ in the superspace setting. This group can be seen as the action of the functor of points of the orthosymplectic supergroup OSp$(m|2n)$ on a Grassmann algebra. While still being connected, the group SO${}_0$ is thus no longer compact. As a consequence, it cannot be fully described by just one action of the exponential map on its Lie algebra. Instead, we obtain an Iwasawa-type decomposition for this group in terms of three exponentials acting on three direct summands of the corresponding Lie algebra of supermatrices. At the same time, SO${}_0$ strictly contains the group generated by super-vector reflections. Therefore, its Lie algebra is isomorphic to a certain extension of the algebra of superbivectors. This means that the Spin group in this setting has to be seen as the group generated by the exponentials of the so-called extended superbivectors in order to cover SO${}_0$. We also study the actions of this Spin group on supervectors and provide a proper subset of it that is a double cover of SO${}_0$. Finally, we show that every fractional Fourier transform in n bosonic dimensions can be seen as an element of this spin group.

Comment: 28 pages

Related Organizations
Keywords

bivectors, spin groups, Lie algebras of Lie groups, Superspace, Mathematics and Statistics, Functions of hypercomplex variables and generalized variables, 30G35, 22E60, Bivectors, Symplectic groups, symplectic groups, Spin groups, INTEGRATION, Mathematics - Group Theory, Clifford analysis, superspace, Mathematical Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green