<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Knot theory is actively studied both by physicists and mathematicians as it provides a connecting centerpiece for many physical and mathematical theories. One of the challenging problems in knot theory is distinguishing mutant knots. Mutant knots are not distinguished by colored HOMFLY-PT polynomials for knots colored by either symmetric and or antisymmetric representations of $SU(N)$. Some of the mutant knots can be distinguished by the simplest non-symmetric representation $[2,1]$. However there is a class of mutant knots which require more complex representations like $[4,2]$. In this paper we calculate polynomials and differences for the mutant knot polynomials in representations $[3,1]$ and $[4,2]$ and study their properties.
22 pages + 3 Appendices
High Energy Physics - Theory, Mathematics - Geometric Topology, High Energy Physics - Theory (hep-th), FOS: Mathematics, FOS: Physical sciences, Geometric Topology (math.GT)
High Energy Physics - Theory, Mathematics - Geometric Topology, High Energy Physics - Theory (hep-th), FOS: Mathematics, FOS: Physical sciences, Geometric Topology (math.GT)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |