Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Geometry ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geometry and Physics
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Projective superspaces in practice

Authors: Cacciatori, Sergio Luigi; NOJA, SIMONE;
Abstract

We study the supergeometry of complex projective superspaces $\mathbb{P}^{n|m}$. First, we provide formulas for the cohomology of invertible sheaves of the form $\mathcal{O}_{\mathbb{P}^{n|m}} (\ell)$, that are pull-back of ordinary invertible sheaves on the reduced variety $\mathbb{P}^n$. Next, by studying the even Picard group $\mbox{Pic}_0 (\mathbb{P}^{n|m})$, classifying invertible sheaves of rank $1|0$, we show that the sheaves $\mathcal{O}_{\mathbb {P}^{n|m}} (\ell)$ are not the only invertible sheaves on $\mathbb{P}^{n|m}$, but there are also new genuinely supersymmetric invertible sheaves that are unipotent elements in the even Picard group. We study the $��$-Picard group $\mbox{Pic}_��(\mathbb{P}^{n|m})$, classifying $��$-invertible sheaves of rank $1|1$, proving that there are also non-split $��$-invertible sheaves on supercurves $\mathbb{P}^{1|m}$. Further, we investigate infinitesimal automorphisms and first order deformations of $\mathbb{P}^{n|m}$, by studying the cohomology of the tangent sheaf using a supersymmetric generalisation of the Euler exact sequence. A special special attention is paid to the meaningful case of supercurves $\mathbb{P}^{1|m}$ and of Calabi-Yau's $\mathbb{P}^{n|n+1}$. Last, with an eye to applications to physics, we show in full detail how to endow $\mathbb{P}^{1|2}$ with the structure of $\mathcal{N}=2$ super Riemann surface and we obtain its SUSY-preserving infinitesimal automorphisms from first principles, that prove to be the Lie superalgebra $\mathfrak{osp} (2|2)$. A particular effort has been devoted to keep the exposition as concrete and explicit as possible.

24 pages

Keywords

High Energy Physics - Theory, FOS: Physical sciences, Mathematical Physics (math-ph), supergeometry, Calabi–Yau supermanifolds; N=2 super Riemann surfaces; Supergeometry; Π-projective geometry; Mathematics - Algebraic Geometry; Mathematics - Algebraic Geometry; High Energy Physics - Theory; Mathematical Physics; Mathematics - Mathematical Physics; Mathematical Physics; Physics and Astronomy (all); Geometry and Topology, \(\Pi\)-projective geometry, Mathematics - Algebraic Geometry, High Energy Physics - Theory (hep-th), Calabi-Yau supermanifolds, FOS: Mathematics, \(\mathcal{N} = 2\) super Riemann surfaces, Calabi-Yau theory (complex-analytic aspects), Analysis on supermanifolds or graded manifolds, Algebraic Geometry (math.AG), Mathematical Physics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Top 10%
Top 10%
Green
bronze